EA Challenges in Present and Future OP Scenarios

AOC Europe 2021

Indra

13/10/2021

Índice

Introduction	1
Operational need	2
Capabilities	3
Key technologies	4
Challenges	5
Conclusion	6

ındra

ındra

Introduction

1

Why Electronic Attack?

- Modern scenario faces modern IADS and no longer single SAM battery as the thread
- IADS refers to all the means necessary for avoid enemy's airborne penetration to a territory, include air surveillance means, battle management and weapon control
- Air surveillance is the initial function for an air defence system. Radar will detect any aircraft entering IADS's area of coverage and initiate the rest of the functions
- The response from the point of view of air forces:
 - Can not be based only on self-protection
 - EA support is needed
 - Based on multiple networked EA assets

How Integrated Air Defense Systems Work

Battle

Management

Air Survillance

Air surveillance provides the potential threat or target; this decision is effectively finalized through threat evaluation and the

move to engage.

Battle management represents a key transition from identifying a threat to committing against that threat through command decisions

C4I – Command, control, computers and intelligence

Weapons

The role and responsibility of a weapon system informs a decision-maker's selection to ensure a relatively efficient engagement, balanced against the variety of threats that may exist at the same time or in a similar geographic region (such as an IADS' area of responsibility).

Source: The Mitchell Forum/Mitchell Institute

Operational needs

Operational needs, EA role

- The main task of the EA assets is to enable safe access to air forces to these A2/AD areas. The main objective for these Electronic Attack assets is to create a safe bubble for aircrafts.
- SOJ, SIJ, Escort Jamming, Modified Escort Jamming are the capabilities

Main capabilities / characteristic for the EA assets

EA response for modern IADS capabilities

Coordinated sensors in multiple bands	ES assets for multiple operation bandsFrom very low frequencies to high frequencies
Mobile networked systems	 Interconnected EA assets coordinated with ES elements Very High Capable networked ESM (CESMO)
Very long range detection	Very low frequencies coverageSmart deception jamming against search modes
Power control and Low power (LPI)	High sensitivity modesSmart power control not based only in very high J/S ratios
Emitter complexity (inter and intra pulse)	 Wideband DRFM with smart DRFM techniques CM generation with poor knowledge of the threat characteristics
AESA and Smart beam control	Very High ERP for EA
Wideband Frequency agility	 Wideband Digital Reception for high performance ES function Very High POI for ES function (100% POI)

Key technologies

- Solid state HPA GaN
- Tx/Rx AESA antenna based on solid stated amplifiers.
- Ultra-wideband Digital Reception for ES and Ultra-wideband DRFM for EA
- Accurate synchronization and location means to enable collaborative techniques
- Smart countermeasures based on real time radar parameters and engagement behaviour (not in pre-knowledge of the system)

ALQ-500 KEY COMPONENTS -

- Signal intelligence collection and powerful ES as one of the main enabler for EA
- Multiband operation as well as high ERP means important SWaP challenges.
- Very Low band operation vs Size & Weight for airborne platform or POD based solution
- Digital AESA
- Combat Cloud tactic and technologies to support real time communication and synchronization.
- Well kwon mature Self-Protection techniques to be coordinated and improved by use of EA means

EW architectures Evolution – Electronic Attack EA

- Dynamic allocation of resources and collaborative tasks through cognitive use of spectrum and mission deployment
- Multiple resource combination, all type of resources, stand in, stand off, manned/unmanned,...
- Synchronization and resources/priorities management, A.I. From collaborative tasks to virtual sensors/actuators with new/additional capabilities
- Cloud, resilient network operation, cybersecurity (secured operation)

Conclusions

- IADS proliferation, its capabilities improvement for these IADS, multi-band and multi-threat, need response from EA capabilities as individual self-protection is no longer enough.
- EA Networked operation is also a must, so interconnected EA assets combat cloud based is necessary.
- Very powerful ES capabilities are essential to support EA. Ultrawideband operation, very high POI, instantaneous geolocation, etc. All these characteristics are enablers for adequate EA.
- Development of assets and means for modern EA is only one aspect of the problem, tactics, training, signal intelligence, and algorithms development is also needed for success.

